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ABSTRACT
The FlexRay bus is the prospective automotive standard
communication system. For the sake of a high flexibility,
the protocol includes a static time-triggered and a dynamic
event-triggered segment. This paper is dedicated to the
scheduling of the static segment in compliance with the
automotive-specific AUTOSAR standard. For the determi-
nation of an optimal schedule in terms of the number of
used slots, a fast greedy heuristic as well as a complete ap-
proach based on Integer Linear Programming are presented.
For this purpose, a scheme for the transformation of the
scheduling problem into a bin packing problem is proposed.
Moreover, a metric and optimization method for the exten-
sibility of partially used slots is introduced. Finally, the
provided experimental results give evidence of the benefits
of the proposed methods. On a realistic case study, the
proposed methods are capable of obtaining better results in
a significantly smaller amount of time compared to a com-
mercial tool. Additionally, the experimental results provide
a case study on incremental scheduling, a scalability anal-
ysis, an exploration use case, and an additional test case
to emphasis the robustness and flexibility of the proposed
methods.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms
Design, Algorithms

1. INTRODUCTION
State-of-the-art automotive networks consist of up to a

hundred Electronic Control Units (ECUs), interconnected
by several buses. Distributed applications are implemented
on these ECUs with the goal to improve safety, comfort,
and efficiency. Upcoming applications like X-by-wire sys-
tems that aim to replace mechanical or hydraulic systems
require a higher bandwidth and increased accuracy com-
pared to the predominant event-triggered CAN bus [4]. The
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Figure 1: The FlexRay communication consisting of
communication cycles with a detailed illustration of
the static segment.

FlexRay communication system [7] has been developed by
an industrial consortium to address these issues. It offers a
time-triggered and an event-triggered architecture, a band-
width of 10 Mbit/s, and supports different topologies, i.e.,
linear bus, star and hybrid topologies. Thus, FlexRay is the
prospective automotive standard communication system.

The FlexRay communication is organized in cycles, as il-
lustrated in Fig. 1. Since each frame has exactly 6 cycle
count bits, the cycles are numerated from 0 to 63 and sub-
sequently start over with 0 again. Each cycle is divided into
four segments of configurable duration:

(1) The static segment enabling a guaranteed real-time
transmission of critical data,

(2) the dynamic segment (optional) for low-priority and
event-triggered data,

(3) the symbol window (optional) used to transmit special
symbols, and

(4) the network idle time used to perform a clock synchro-
nization.

The focus of this paper is put on scheduling the static seg-
ment. The static segment is made up of n equally sized
slots where each one is uniquely assigned to one node (or
none). One node, however, may occupy more than one slot.
Each slot consists of a header and trailer segment and a pay-
load segment that is statically configured to carry between
0 and 254 bytes. By a predefined schedule, each slot is filled
with the communication data of the applications, the pro-
tocol data units (PDUs). The PDUs are measured in bytes
as the basic unit. In this paper, it is assumed that the basic
communication units are PDUs, thus, the signals are already
packed into PDUs. This is a common scenario, since PDUs
are predefined by ECU and gateway packing strategies.



As illustrated in Fig. 1, the FlexRay protocol uses a time
division multiple access (TDMA) to multiplex the communi-
cation into different slots. All participants of a FlexRay bus
are aware of the current cycle number. As suggested in the
AUTOSAR FlexRay Interface Specification [1], this value is
used in series-production vehicles for a second multiplexing
dimension to increase the utilization of the bus. Considering
the AUTOSAR specification, the optimization of the sched-
ule of the static segment becomes a challenging task that is
the main subject of this paper.

The remainder of this paper is outlined as follows: Sec-
tion 2 defines the problem of the schedule optimization of
the static segment of a FlexRay bus and Section 3 presents
related work on this topic. The schedule optimization is
presented in Section 4, introducing a transformation from
slot to bin packing and vice versa, a heuristic and complete
ILP-based bin packing, as well as a metric and optimiza-
tion method for the extensibility of a single slot. Section 5
presents the experimental results including a comparison to
a commercial tool, a test case for incremental scheduling,
and a scalability analysis of the proposed methods. More-
over, the introduced techniques are used for an exploration
of the used slot size and one additional handmade test case
is presented to study the exibility and robustness of the pro-
posed methods. Finally, the paper is concluded in Section 6.

2. PROBLEM DEFINITION
Scheduling Requirements. In real-world implementa-

tions of the FlexRay bus, the periodic and safety-critical
data is scheduled on the static time-triggered segment while
the dynamic segment is mainly used for maintenance and
diagnosis data [3, 20]. Though, in the first generation of the
FlexRay bus in series-production vehicles, the static segment
is not used at the full capacity [20], it is projected that the
data volume on FlexRay buses will increase significantly in
the future. Therefore, a schedule optimization that mini-
mizes the number of used slots is necessary to (1) allow a
high flexibility for incremental schedule changes1 and (2)
for future automotive networks with a higher data volume.
Hence, an efficient schedule optimization of the static seg-
ment is the key to the success of the FlexRay bus.

The configuration of the FlexRay bus is defined by a large
set of parameters. In particular, these parameters allow
a configuration of the number and size of the slots in the
static segment. Nevertheless, these values are mostly pre-
defined by the manufacturer guided by existing data. For
instance, the duration of a communication cycle is usually 5
milliseconds due to the periods of the PDUs in the present
automotive networks that are predominantly a multiple of 5
milliseconds. For each PDU that is routed on the FlexRay
bus, a fixed size in bytes is given and the minimal repetition
is deduced from the period of the communication cycle and
its own period, cf. [8]. In order to efficiently improve the
tunable FlexRay parameters, fast scheduling techniques are
necessary to allow for an effective parameter exploration.

AUTOSAR Interface Specification. As suggested in
the AUTOSAR FlexRay Interface Specification [1] that is
currently applied in all series-production vehicles, cycle mul-
tiplexing is used to increase the utilization of the FlexRay
bus. An example of this cycle multiplexing for a single slot
is illustrated in Fig. 2. The cycle multiplexing of PDUs is
defined by the base cycle and the cycle repetition: The base
cycle defines the offset in cycles for the first occurrence of

1Incremental changes are common in the automotive area
to decrease the testing exposure.
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Figure 2: FlexRay cycle multiplexing of a single
static slot. For a high utilization, the cycle multi-
plexing allows each slot to have an arbitrary message
scheduling in each communication cycle.

the respective PDU. The cycle repetition denotes the fre-
quency of a PDU in the multiplexing. The value of the
cycle repetition is always a power of two 2n, n ∈ {0, ..., 6}
to allow a periodic occurrence in the 64 cycles. Thus, for
a given base cycle b and repetition r, a PDU is existent in
each communication cycle CCi with

i = (b + r · n)%64 with n ∈ N0.

An example of scheduling three PDUs m0, m1, and m2 is
given in Fig. 2. The base cycle values are 0 for m0 and m1

as well as 3 for m2. The repetition values are 1 for m0, 2
for m1, and 4 for m2. Given a common duration of a sin-
gle communication cycle of 5 ms, the message m0 is sent
each cycle with a period of 5 ms, the message m1 each sec-
ond cycle with a period of 10 ms, and the message m2 each
fourth cycle with a period of 20 ms. The cycle multiplexing
technique maximizes the utilization of the static segment
in compliance with the high requirements for reliability and
robustness and, therefore, is integrated into real-world au-
tomotive implementations of the FlexRay bus based on the
AUTOSAR specification.

3. RELATED WORK
The FlexRay specification [7] is under development by the

FlexRay Consortium including BMW, Daimler, General Mo-
tors, and Volkswagen. Currently, the series-production ve-
hicles using FlexRay are the BMW X5, X6 and 7 series [2]
and the Audi A8 [12]. All these series-production vehicles
are compliant with the FlexRay AUTOSAR Interface Spe-
cification [1]. Thus, this AUTOSAR specification is the de-
facto industrial standard for the software specification of the
FlexRay nodes.

Recent papers cover diverse FlexRay related topics. An
introduction of the FlexRay protocol and the operating mode
in real-world automotive systems is presented in [1, 3, 23].
In [9, 19], a timing and performance analysis of FlexRay
embedded systems is given, mostly focused on the dynamic
segment. The determination and optimization of FlexRay
schedules for the dynamic segment is discussed in [18]. The
work in [13] presents a scheme for the acknowledgment and
retransmission of data that is implemented on top of an ex-
isting FlexRay schedule in order to increase the reliability
of FlexRay-based applications.
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Figure 3: Schedule optimization flow.

An approach that optimizes the static segment with a
genetic algorithm is proposed in [6]. The paper [24] in-
troduces an ILP approach for a proposed custom software
architecture. However, these papers do not consider the
AUTOSAR [1] software specification for the FlexRay bus
and are, therefore, not viable for current FlexRay schedul-
ing problems in the automotive area. A recent work on
scheduling the static segment is given in [8]. This paper
includes the optimization of the schedule with respect to cy-
cle multiplexing. However, a predefined frame packing as
described in [21, 22] is assumed. This approach is rather
restrictive since a two-level packing of signals to PDUs and
PDUs to frames as provided by AUTOSAR is common in
the automotive area. In contrast, the work at hand enables
the scheduling of the PDUs directly into slots including the
frame packing. Available tools for the scheduling problem as
introduced in the previous section are TTX Plan [25] based
on an heuristic approach and DaVinci Network Designer
FlexRay [26], a graphical user interface that only allows
to build schedules manually. The scheduling algorithm of
TTX Plan is not published, but the experimental results
in this paper give evidence of an inferior behavior regarding
runtime and quality of results.

One of the main contributions of this paper is a trans-
formation scheme for the FlexRay scheduling problem into
a special two-dimensional bin packing problem and its ef-
ficient solution. The general two-dimensional bin packing
problem has been researched thoroughly, a brief summary
is presented in [14]. Since an exact solution with an Inte-
ger Linear Program (ILP) results in a huge number of vari-
ables, cf. [5], heuristics are usually favored for unconstrained
problems. However, in the presence of constraints like the
level [15] or guillotine packing [20], an ILP can be formu-
lated and solved efficiently. To the best of our knowledge,
the special two-dimensional bin packing problem with indi-
vidual level constraints, as presented in the work at hand,
has not been topic of any research so far.

4. SCHEDULE OPTIMIZATION
The optimization flow as proposed in this paper is illus-

trated in Fig. 3. The main goal is to minimize the num-
ber of used slots in order to maximize the utilization of the
bus. Unused slots are still part of the final schedule, but
these slots can be assigned to any ECU if the schedule is
extended incrementally in further development. Moreover,
a fast scheduling approach is advantageous for, e.g., the ex-
ploration of specific bus parameters.

First, the transformation of the original slot packing prob-

lem into a special bin packing problem is performed using
the proposed transformation scheme. The bin packing is
carried out in order to minimize the number of allocated
slots. This paper introduces a fast heuristic and a complete
ILP approach for this special bin packing problem. After-
wards, the proposed reordering heuristic is used to further
maximize the extensibility of the allocated slots by varying
the position and base cycles of the PDUs in the slots. Fi-
nally, the transformation is inverted to convert the solution
of the bin packing to a feasible FlexRay schedule. Since each
slot is assigned to at most one ECU, the scheduling for each
ECU is done independently and the slots are put together
in the final schedule.

4.1 Problem Transformation
This section describes a one-to-one transformation be-

tween the slot packing problem that arises from the FlexRay
cycle multiplexing and a special form of a two-dimensional
bin packing problem. Since each slot corresponds to one bin,
the transformation is presented for a single slot to a single
bin and vice versa.

First, the general conditions for a feasible FlexRay slot
packing are introduced: Each slot is defined by the payload
size W (without the reserved load for the AUTOSAR specific
update bits) and the number of cycles H which is 64 for the
FlexRay bus. The set of PDUs is denoted M .

Each PDU m ∈ M is defined by the following two values:

• wm ∈ N - byte-length with wm ≤ W .

• rm ∈ {2n|n ∈ {0, ..., 6}} - repetitions in the powers
of two, defining the step-size for the multiplexing over
the cycles. It holds that rm ≤ H .

For a feasible slot packing, two values for each PDU have
to be determined:

• xm ∈ N0 - the offset in bytes on the x-axis.

• bm ∈ N0 - the base cycle that defines the offset on the
y-axis. It holds that bm < rm.

A PDU is not allowed to exceed the slot (xm+wm ≤ W ) and
no intersection between two PDUs is possible. The task of
the transformation of the slot packing into a bin packing is to
convert each PDU into a rectangle element and determine
its position such that each feasible slot packing results in
a feasible bin packing and vice versa. The bin size is the
same as the slot size with the width W and height H . Also
the position on the x-axis xm and the width wm for each
element m correspond to the position and width of the PDU
in the slot packing. Therefore, the main task is to find a
transformation that obtains the following two values for each
element m:

• ym ∈ N0 - the offset on the y-axis.

• hm ∈ N0 - the height of an element.

The transformation for the height hm is related to the rep-
etition rm:

hm = H
rm

(1a)

rm = H
hm

(1b)

Thus, the height of an element equals the number of appear-
ances of the corresponding PDU in the H cycles.

Given bm < rm, it follows that in the bin packing problem,
the ym position is restricted to rm individual levels, depend-
ing on the height of the element. It holds that the level of an
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Figure 4: Example of a transformation from a slot
packing problem (a) to a bin packing problem (b)
and vice versa.

element lm = ym/hm has to be in N0. This arises from the
fact that two PDUs with the same repetition but different
base cycles will never intersect each other. The same holds
for elements of the same height but different levels.

Consider the following transformation function t : N0 ×
N → N0:

t(x, y) =

⎧⎨
⎩

0, x = 0

t(x
2
, y

2
), x is even

t(x−1
2

, y
2
) + y

2
, x is odd

(2a)

with

y ∈ {2n|n ∈ N0} (2b)

0 ≤ x < y and x ∈ N0 (2c)

It holds:

t(t(x, y), y) = x and t(x, y) = t−1(x, y) (2d)

The transformation function t directly transforms the level
of an element lm to the base bm and vice versa, such that
the following holds:

lm = t(bm, rm) and bm = t(lm, rm)

and, thus,

ym = lm · hm = t(bm, rm) · H
rm

(3a)

and

bm = t( ym
hm

, rm) = t( ym
hm

, H
hm

). (3b)

Thus, a transformation from the slot packing problem to a
bin packing problem with individual level constraints based
on the height of the elements is done by applying Eq. (1a)
and (3a) for each PDU. For the opposite direction, the trans-
formation is performed by Eq. (1b) and(3b) for each element.
An example for the transformation of a single slot is given
in Fig. 4. A detailed proof for the correctness of this trans-
formation is given in Appendix A.

4.2 Bin Packing
The task of a two-dimensional bin packing problem is to

pack rectangular elements of different sizes defined by an
individual width w and height h into a minimal number of
rectangular bins without any intersection. Each bin has the
fixed length W and height H . The transformation of the slot
packing into a special two-dimensional bin packing problem
determines a rectangular element m with the width wm and

height hm for each PDU m ∈ M . The width of the bin
equals the payload of a slot W and the height is the number
of cycles which is 64 for FlexRay.

In contrast to the common two-dimensional bin packing,
the transformed problem from the previous section contains
two constraints:

(1) Each element m ∈ M has a height hm that is a power
of two, i.e., 2n with n ∈ N0 and the bin height is at
least the maximal height of all elements.

(2) Each element m ∈ M can be placed everywhere on the
x-axis but only on a multiple of its height on the y-axis,
i.e., ym = l · hm with the level l ∈ {0, ..., H

hm
− 1}.

This section introduces two optimization approaches for this
specially constrained two-dimensional bin packing problem.
The first approach is a fast greedy heuristic, the second is an
efficient encoding as an ILP that allows to find the optimal
solution.

4.2.1 Fast Greedy Heuristic
The presented bin packing problem can be solved by a

fast greedy heuristic comparable to the approach presented
in [20]. This heuristic is outlined in Alg. 1.

Algorithm 1 Fast greedy heuristic for bin packing.

1: S = {} //set of bins
2: for m ∈ M do
3: for s ∈ S do
4: if place(m,s) then
5: continue with next m
6: end if
7: end for
8: create new s and add it to S
9: place(m,s)

10: end for

The algorithm starts with an empty set of bins S. Each
element m ∈ M is tried to be placed subsequently in a bin
s ∈ S. Here, the function place(m,s) is problem dependent
and returns true if the placing is successful, and false other-
wise. If an element is not placed in any of the allocated bins
in S, a new bin s is allocated, added to S, and the element
m is placed into this new empty bin.

Applied to the proposed special bin packing problem, the
order of M influences the quality of the results. The ele-
ments in M are ordered first by their height hm such that
high elements are ordered to the front. The second crite-
rion for the ordering of elements of the same height is the
width wm such that wide elements are ordered to the front.
The function place(m,s) tries to place each element m the
most left void space in the bin s considering the individual
level constraints of the proposed bin packing problem. This
strategy tends to avoid the waste of void space of the bins.
The complexity of this heuristic is polynomial.

4.2.2 ILP
Basic ILP. Solving a general two-dimensional bin pack-

ing problem with an Integer Linear Program (ILP) results in
a high number of variables and constraints [5, 15]. However,
the fact that each element has a height of a power of two
and can only be placed on levels depending on its height can
be exploited to deduce a compact and efficient ILP formula-
tion with relatively few variables and constraints. The ILP
formulation relies on the following binary variables:



• ms,l - element m is placed at level l in bin s

• s - bin s is allocated (used)

The ILP is formulated as follows:

min
∑
s∈S

s (4a)

∀ m ∈ M :
∑
s∈S

H
hm

−1∑
l=0

ms,l = 1 (4b)

∀ s ∈ S, {y = 0, ..., H − 1} :
∑

m∈M

wm · m
s,

⌊ y
hm

⌋ ≤ W (4c)

∀ m ∈ M, s ∈ S, {l = 0, ..., H
hm

− 1} : s − ms,l ≥ 0 (4d)

The objective function (4a) of the ILP minimizes the num-
ber of allocated bins. Here, the set S has to contain a mini-
mal number of bins that are necessary to solve the problem.
This number is deduced from the presented fast heuristic ap-
proach. The constraints (4b) state that each element m is
placed in exactly one bin s at the specific level l. By adding
the widths of the elements and restricting this sum by the
width of a bin, the constraints (4c) ensure that the size of
each bin is not exceeded. The constraints (4d) state that a
bin s has to be allocated if at least one element m is placed
in it.

Solving this ILP provides a bin s and level l for each el-
ement m (exactly one variable ms,l is true). Placing the
elements starting from the highest element to the most left
void space in the bin s at the level l results in a feasible
solution of the bin packing problem. This holds since the
individual level constraints induce that each element that is
sorted to the most left void space has at most one contact
element on its left, cf. Fig. 4(b). Thus, the constraints (4c)
are sufficient to determine a feasible bin packing.

Though this is a very efficient ILP encoding in terms of
the number of variables, one has to keep in mind that the
complexity of an ILP is exponential in general. Moreover, in
contrast to the heuristic approach, the presented ILP cannot
be used incrementally, i.e., an already allocated bin cannot
be filled with additional elements without moving the old
elements.

Enhanced ILP. The stated ILP can be further improved
by reducing the search space by applying domain-specific
knowledge. First, the set of S is reduced by one bin, simpli-
fying the ILP by omitting several variables and constraints.
In case there exists no feasible solution of this simplified
ILP, there also exists no feasible bin packing for |S|− 1 bins
and, thus, the reference solution obtained by the heuristic is
already optimal.

Furthermore, a lower bound for the objective is deduced
by domain-specific knowledge to improve the runtime of the
ILP. This lower bound is calculated as follows:

lb(M) =

∑
m∈M wm · hm

W · H . (5a)

The additional constraint∑
s∈S

s ≥ �lb(M)� (5b)

sets the lower bound for the objective function. This con-
straint improves the runtime of the ILP: If the optimal solu-
tion is reached and equals the lower bound, the optimization
process terminates immediately.

Regarding the problem of bin packing, a so-called symme-
try breaking is applicable to reduce the search space. Con-
sider the following one dimensional bin packing example:
Given two elements m1 and m2 and two bins s1 and s2,
there exist four possible distributions of the elements to the
bins:

1. m1, m2 in s1

2. m1 in s1 and m2 in s2

3. m1, m2 in s2

4. m1 in s2 and m2 in s1

Since all bins have the same size and their order is negligible,
there exists a symmetry between s1 and s2 regarding (1),(3)
and (2),(4): Either (1) or (3) state that both elements are in
the same bin, and correspondingly (2) or (4) state the both
elements are in different bins. If the element m2 is prohibited
to be packed to bin s2, (2) and (3) become invalid and the
symmetry is broken. Thus, the search space is effectively
reduced.

In order to generalize the symmetry breaking for the pre-
sented ILP formulation for the two-dimensional bin packing
problem, two order functions for the elements and bins are
used:

o : S → N (5c)

o : M → N (5d)

These functions assign to each element and bin, respectively,
a unique integer value starting from 1 to |M | and |S|, respec-
tively. Given these functions, the symmetry breaking be-
tween bins is performed by adding the following constraints
to the ILP formulation:

∀m ∈ M, s, s′ ∈ S(s 	= s′), l = {0, ..., H
hm

− 1}
with o(m) = o(s′), o(s′) < o(s) : ms,l = 0 (5e)

This ensures that an element is not allowed to be placed in
a bin with a higher order.

Additionally, the two-dimensional bin packing leads to a
possible horizontal symmetry through the middle of each
bin. The symmetry breaking inside a bin is performed by
adding the following constraints:

∀m ∈ M, s ∈ S, l = {0, ...,
⌈

H
2·hm

− 1
⌉
}

with o(m) = o(s) : ms,l = 0 (5f)

This ensures that all elements with the same order value as
the order value of a bin can only be placed in the lower half
of this bin. Note that each symmetry breaking effectively
accelerates the ILP solving without excluding optimal solu-
tions.

4.2.3 Mutex Packing
In some cases, it becomes necessary to add mutual exclu-

sion (mutex) to the bin packing, i.e., two elements are not
allowed to be packed into the same bin. This requirement
arises if the scheduling problem uses the in-cycle repetition
of PDUs, cf. [2].

The in-cycle repetition allows the scheduling of PDUs with
a lower period than the duration of one communication cy-
cle. Consider the example in Fig. 5: Let the duration of a
communication cycle t be 5ms. Without the in-cycle repeti-
tion, the smallest available period is 5ms with the repetition
r = 1. Given a PDU m1 with the period t

2
(2.5ms), the

in-cycle repetition allocates two slots with the approximate



Communication Cycle (CCi) CCi+1

Static Segment

m1
1m0

1 ≈ t
2

(2.5ms)

t (5ms)

Figure 5: In-cycle repetition of a PDU m1 in the
static segment. The period of m1 is twice the dura-
tion of the communication cycle by scheduling two
instances of m1 in two different appropriate slots.

distance of t
2

and schedules m1 twice each communication

cycle. Thus, for the PDU m1, two instances m0
1 and m1

1

with the repetition r = 1 are scheduled. The requirement
that both PDUs m0

1 and m1
1 are not scheduled in the same

slot ensures that the slots can be arranged such that they
have an approximate timing distance of t

2
.

Extending the bin packing with the fast greedy heuris-
tic from Section 4.2.1 by the mutex requirement is done by
adding additional logic to the function place(m,s). Given
two elements m and m̃ that are prohibited to be placed in
the same bin, the function place(m,s) returns not only false
if the void space in the bin is not enough for element m, but
also if the element m̃ is already packed in the slot s. This
has to be done for all pairs of mutually excluded elements.

In order to handle the mutex requirement in the ILP for-
mulation given in Section 4.2.2, additional constraints be-
come necessary. For each pair of mutex elements m and m̃,
the following constraints are added to the formulation:

∀s ∈ S, l ∈ {0, ..., H
hm

− 1} : −ms,l +
∑

s̃∈S\{s},

l̃∈{0,..., H
hm̃

−1}

m̃s̃,̃l ≥ 0

(6)
In general, for the in-cycle repetition it holds hm = hm̃ =
H resulting in l = l̃ = {0}. These additional constraints
restrict the search space, leading to an observed speedup of
the ILP runtime.

4.3 Reordering for Extensibility
In real-world applications, an incremental scheduling is

applied to allow scheduling new PDUs without changing the
existing schedule, i.e., changing the position of the existing
PDUs and slots. In order to minimize the number of allo-
cated slots, the void space in partially used slots is exploited
to schedule new PDUs. The extensibility of a slot describes
its capability to allow scheduling additional PDUs.

This section introduces a metric for the extensibility of a
bin, and, therefore, also for the corresponding slot. More-
over, a heuristic for the reordering of the elements in a bin
is presented to maximize the extensibility value. The uti-
lization of a bin is defined as:

U(s) =
∑
m∈s

wm
W

· hm
H

(7a)

This value is between 0 and 1. In general, a lower utilization
leads to a higher extensibility of a bin. However, the void
space of a bin should be connected to enable the placement
of large elements as well as several small elements. On the
other hand, an unconnected void space hinders the place-
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Figure 6: Extensibility metric with (a) a suboptimal
solution of E(s) = 6

64
and (b) the optimal solution of

E(s) = 3
64

.

ment of large elements. Note that large elements correspond
to large or frequently sent PDUs. Thus, the goal is to re-
order the elements in a bin in order to maximize a maximal
rectangle over the void space. Fig. 6 illustrates two different
element orderings in a bin. As a measure of extensibility,
the following formula is proposed in the work at hand:

E(s) = 1 − U(s) − wmax
W

· hmax
H

(7b)

The values wmax and hmax are the width and height of the
rectangle with maximal area over the void space. A small
value indicates a high extensibility such that E(s) should be
minimized. Note that this formula has the advantage that
inferior bin packings that produce a high number of bins are
not favored since also bins with the utilization 1 have the
optimal extensibility value 0.

Reordering the elements in a bin with the proposed metric
is not possible with a complete method like an ILP since the
objective function is not linear. Thus, an approach based
on Simulated Annealing (SA) [11] is used. SA is a popular
heuristic optimization approach that iteratively improves a
single solution. At each step, the SA creates a neighbor so-
lution based on the current solution and replaces it with a
given probability or if the new solutions is better, respec-
tively. The probability for the replacement of solutions sx

with sy is calculated by

e
−E(sx)−E(sy)

τ(i) (7c)

where τ (i) is the temperature at iteration i. The temper-
ature is calculated by a user defined continuously falling
function τ (i) that simulates the annealing process. The op-
timization process is limited by a maximal number of itera-
tions.

Searching for a neighbor of a bin packing cannot be per-
formed straightforward since moving a single element ran-
domly would create many infeasible solutions due to ele-
ments intersecting each other. Instead, the constraints de-
fined in Eq. (4b) and (4c) are used in combination with the
feasibility-preserving neighbor operator for linear constraint
as proposed in [16]. This constrains the search space to the
feasible bin packing solutions. Thus, a fast convergence to
the optimal solution is reached.

5. EXPERIMENTAL RESULTS
A realistic example consisting of a FlexRay bus with 8

ECUs and an overall number of 220 PDUs is carried out as
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Figure 7: Distributions for PDU sizes and periods
of the realistic case study.

a case study to show the applicability of the proposed meth-
ods. The distribution of the sizes and periods of the PDUs is
illustrated in Fig. 7. The PDUs are highly heterogeneous in
terms of their period and size. The parameters of the Flex-
Ray bus are predefined such that the static segment consists
of 62 slots with each slot carrying a payload of 42 bytes. Ef-
fectively, only 41 bytes are used since one byte is reserved
for the update bits. The duration of the communication cy-
cle is 5 milliseconds. The experiments were carried out on
an Intel Pentium 4 3.20 GHz machine with 512 MB RAM.
The ILP solver for the bin packing was the CPLEX solver
in the version 10.5 [10]. The reordering was performed with
the heuristic optimization framework Opt4J in the version
1.3 [17]. Here, the number of iterations for the simulated
annealing was set to n = 1500 and the temperature was
calculated by the following function:

τ (i) = 10−(1+2
i
n

)

As described in the related work in Section 3, to the best
of our knowledge, there exists no publication regarding the
FlexRay bus scheduling in compliance with the industrial
AUTOSAR Interface Specification [1] as presented in the
work at hand. Currently, the only available automatic schedul-
ing approach compliant with the AUTOSAR specification is
the commercial tool TTX Plan [25]. For the introduced
case study, a reference solution obtained by TTX Plan is
available. Thus, a comparison is given in the following sub-
section. Since the tool TTX Plan is not available for evalu-
ation, no reference solutions are available for the subsequent
experimental results.

5.1 Schedule Optimization
For all test cases, the time for the transformation into a

bin packing problem and vice versa was omitted since it is
negligibly small (less than 1 millisecond). The heuristic and
ILP bin packing were tested, both with an additional re-
ordering. By using the reordering strategy, the calculated
average extensibility value E(s) for all slots was minimized.
The results for the case study are given in Tab. 1. The run-
times for the heuristic and ILP approach for the case study
is a fraction of a second. The row ILP* in Table 1 shows
the results that were obtained by the ILP approach without
the presented enhancements. Here, the runtime is signifi-
cantly higher with 25.7s. In fact, the ILP enhancements are

Method runtime slots avg. E(s)

Heuristic 0.065s 27 0.029
+ Reordering +42.5s 27 0.016

ILP* (CPLEX) 25.7s 27 0.028
ILP (CPLEX) 0.080s 27 0.028
+ Reordering +48.0s 27 0.019

TTX Plan 360s 29 0.043

Table 1: Results for the case study.

always advantageous and are used in the following for all
experiments since there arises no additional overhead. The
heuristic and ILP approach both deliver solutions with 27 al-
located slots. Moreover, the ILP approach proves that 27 al-
located slots is the optimal solution. The presented reorder-
ing heuristic improves the average extensibility value E(s)
significantly in approximately 45 seconds for both methods.

The proposed algorithms were compared to a result ob-
tained by the commercial available scheduling tool TTX
Plan [25] that is based on an undisclosed heuristic approach
with a prospected polynomial scalability of the runtime.
While the commercial tool returns a schedule with 29 al-
located slots, the heuristic and the ILP improve this value
by two slots, which is significant for a real-world applica-
tion. These results show that the commercial tool delivers
an inferior result in a comparatively large amount of time,
in particular, in 6 minutes. The runtime of the commercial
tool TTX Plan and the presented approaches differs by four
orders of magnitude. Since scheduling is typically just one
of several tasks in a complete design flow, this enables de-
sign space explorations with reasonable runtimes using the
proposed algorithms.

5.2 Incremental Scheduling
In contrast to the ILP approach, the heuristic scheduling

method allows an incremental scheduling, i.e., an existing
schedule is extended by additional PDUs without chang-
ing the position of the existing slots and PDUs. The in-
cremental scheduling cannot guarantee an optimal schedule,
but has the advantage that integration tests, as required
in safety critical automotive applications, are kept at mini-
mum. Thus, an incremental scheduling might be favored if
the number of allocated slots is still not critical since inte-
gration tests are time-consuming and expensive.

In order to test the ability of the heuristic approach to
extend an existing schedule incrementally, 60 random PDUs
are generated following the distribution in Fig. 7. These 60
PDUs are distributed randomly among the 8 ECUs. The
schedule generated in the previous subsection with the ILP
approach is used as the base schedule that shall be extended.
The results are given in Table 2. Starting from an existing
schedule with 27 allocated slots and an extensibility value
(E(s)) of 0.028 as determined by the ILP approach without
additional reordering of the PDUs, 11 additional slots are
necessary to schedule the new PDUs. In contrast, starting
from the same schedule with an extensibility (E(s)) value of
0.019 as improved by the reordering, the necessary slots are
10 decreased by one slot compared to the approach without
reordering. Thus, the reordering and the lower extensibil-
ity value show the benefit for this example of incremental
scheduling. The runtime of the incremental scheduling is
fairly low with 20 or 22 milliseconds, respectively. For com-
parison only, Table 2 shows the results of the scheduling of
all 280 PDUs at once using the ILP approach, without in-
crementally changing an existing schedule. In this case, the



Method runtime slots avg. E(s)

ILP (0.028) → Heuristic 0.022s 38 0.036
ILP (0.019) → Heuristic 0.020s 37 0.035

ILP (CPLEX) 12.2s 35 0.033

Table 2: Results of the incremental scheduling for
the given case study.

optimal schedule is determined in 12.2 seconds with 35 slots.
This also shows that the incremental scheduling is relatively
efficient with only two additional slots if the reordering is
applied.

Adding additional ECUs to an existing FlexRay bus sys-
tem without additional PDUs for existing ECUs is not con-
sidered as incremental scheduling. In this case, the ILP or
heuristic approach can be used separately for the new ECUs
without any restriction.

5.3 Scalability Analysis
As a study for the scalability of the presented approaches,

a scheduling for a single node is performed. An ordered
list of 60 random PDUs is generated from the distribution
of the given case study in Fig. 7. In this experiment, the
first n PDUs of the ordered list are scheduled ensuring a
monotonicity of the results. The slot size is 41 bytes as in
the given case study. The study is performed for the ILP
and heuristic approach using the average of 100 runs. For
the ILP approach, a timeout of 120s is used.

The results are given in Fig. 8. Figure 8(a) shows the num-
ber of allocated slots per number of PDUs, and Fig. 8(b)
shows the corresponding runtime for the algorithms. The
number of allocated slots is always better for the ILP. On
the other hand, the heuristic performs well with only a sin-
gle additional necessary slot for some n values. The runtime
of the heuristic approach shows a polynomial character as
prospected (the plot in Fig. 8(b) is given in log-scale). In
contrast, the runtime of the ILP approach highly depends
on the current problem instance. If the heuristic finds an
optimal result, the lower bound for the objective from Equa-
tion (5b) is trivially unsatisfied for |S|−1 slots and the run-
time of the ILP approach equals the runtime of the heuristic.
The runtime of the ILP is significantly higher if the current
set of PDUs results in a number of allocated slots that allows
an improvement compared to the heuristic approach.

The results show that the ILP could improve the number
of allocated slots in some cases by one slot within approx-
imately one second. On the other hand, the ILP approach
did timeout for some cases not returning a better result than
the heuristic. Thus, for real-world applications, an appro-
priate timeout should be chosen for the ILP approach to
enable a reasonable runtime. Note that scaling the number
of the ECUs has a linear complexity since the bin packing
and reordering is done separately for each ECU.

5.4 Slot Size Exploration
As a use case for the requirement for fast and optimal

scheduling, the ILP approach is used for an exhaustive ex-
ploration of the payload size for the static slots. This op-
timization results in many trade-off solutions, since one ob-
jective is to maximize the cumulative payload of the unused
slots for a higher extensibility and another objective is to
maximize the number of unused slots for a higher flexibility.
The number of slots is adapted such that the duration of
the static segment is approximately 4.03 ms. The FlexRay
protocol allows a configuration of the payload from 0 to 254
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Figure 8: The result of the scalability analysis.

bytes whereas this value has to be a multiple of two. The
exploration was performed from 34 bytes payload per slot as
the minimal value due to the maximal message length and
one additional byte for the update bits to 120 bytes. The
runtime of the exploration was 435 seconds. The results of
the cumulative payload of the unused slots depending on the
slot payload size is given in Fig. 9. Obviously, a larger pay-
load size of the static slots leads to less static slots per cycle
and, thus, less communication overhead and in general to a
higher cumulative payload of the unused slots. Compared
to the predefined value of 42 bytes (35 unused slots), the
solutions with 56 bytes (29 unused slots), 66 bytes (26 un-
used slots), and 76 bytes (24 unused slots) are considerable
trade-off solutions. Based on these results and the knowl-
edge that all values are optimal, a designer can choose the
appropriate parameter for the slot size.

5.5 Supportive Test Case
In order to show the flexibility of the proposed approach,

a supportive case study is used. This handmade case study
is based on the FlexRay configuration and scheduling in the
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Figure 10: Distributions for PDU sizes and periods
of the supportive case study.

BMW series 7 as provided in [2]: Overall 15 nodes are inter-
connected by a FlexRay bus. The duration of the commu-
nication cycle is the automotive typical value of 5ms with
3ms for the static segment and 2ms for the dynamic seg-
ment. The static segment consists of 91 slots each having
a payload of 16 bytes. The periods of the PDUs, that are
scheduled on the static segment, are 5ms, 10ms, 20ms, and
40ms. Moreover, approximately 10 PDUs with the period
of 2.5ms are scheduled by a double in-cycle repetition as
shown in the Section 4.2.3 and Fig. 5. The maximal size
of the PDU is 8 bytes. The current schedule of the BMW
series 7 uses approximately two-third of the static slots.

Using the given information, 237 random PDUs were gen-
erated from the distribution in Fig. 10 and assigned ran-
domly to 15 ECUs. Compared to the first case study, this
handmade test case is more homogeneous in the size and
period of the PDUs. The results of scheduling using the
heuristic and ILP approach are given in Table. 3. The
heuristic finds a schedule with 65 used slots in 12ms, the
extensibility value E(s) is decreased from 0.028 to 0.011 in
5.3s. Compared to this, the ILP approach finds the optimal
schedule with 63 slots improving the heuristic approach by
two slots. The runtime of the ILP is fairly low with 1.2s
(the ILP* without the presented enhancements needs 2.7s).
The extensibility value E(s) is comparable to the heuristic
approach with 0.026 and the reduction to 0.011 in 4.9s.

This supportive case study shows the robustness and flex-
ibility of the presented scheduling approaches. The ILP and

Method runtime slots avg. E(s)

Heuristic 0.012s 65 0.028
+ Reordering +5.3s 65 0.011

ILP* (CPLEX) 2.7s 63 0.026
ILP (CPLEX) 1.2s 63 0.026
+ Reordering +4.9s 63 0.011

Table 3: Results for the supportive case study.

heuristic approach perform well in runtime and quality of
results also on this fundamentally different test case.

6. CONCLUSION
This paper presents a scheduling optimization scheme for

the static segment of the FlexRay bus in compliance with
the AUTOSAR specification. First, the problem is trans-
formed into a special two-dimensional bin packing problem
using a proposed one-to-one transformation scheme. This
constrained bin packing problem is solved either with a pre-
sented heuristic approach delivering good results in a rela-
tively small amount of time or an introduced efficient ILP
approach that delivers the optimal solution. Moreover, the
paper presents a metric for the extensibility of an allocated
slot and a heuristic based on Simulated Annealing is pro-
posed to improve a schedule concerning this value.

The results of the realistic case study show that the heuris-
tic and ILP approach are superior to a commercial tool in
runtime and quality. An incremental scheduling shows that
the presented extensibility metric is sound, being capable of
saving additional slots. The scalability analysis studies the
applicability of the proposed methods. For the fast and op-
timal scheduling, a use case is given by an exploration for
the optimal payload size of the slots for the static segment.
Finally, a supportive case study shows the flexibility and
robustness of the proposed algorithms.
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APPENDIX
A. PROOF OF PROBLEM TRANSFORMA-

TION
In the following, a proof for the problem transformation

from Section 4.1 is given.

Theorem 1. Two elements in the generated bin packing
intersect if and only if the corresponding PDUs in the slot
packing problem are conflicting, i.e., intersecting.

Proof. For the x-transformation this is trivial since the
x-position and width w of the PDUs or elements, respec-
tively, are identical. Thus, this has to be solved for the
y-transformation as given by the Equations (1a), (1b), (3a),
and (3b).

The function t(x, y) from Eq. (2a) performs a bitwise flip
operation of the value x given in Little-endian encoding on
its log2 y bits. This satisfies the properties of function t in
Eq. (2d) under the assumptions in Eq. (2b) and (2c).

Two elements in a bin intersect if

¬((ym + hm ≤ ym̃) ∨ (ym ≥ ym̃ + hm̃)) (8a)

or by applying De Morgan’s law

(ym + hm > ym̃) ∧ (ym < ym̃ + hm̃). (8b)

Applying Eq. (1a) to Eq. (8b) results in

ym − ym̃ > − H

rm
and ym − ym̃ >

H

rm̃
. (8c)

A further transformation with Eq. (3a) results in the follow-

ing equations:

rm · t(bm̃, rm̃) < rm̃ · (t(bm, rm) + 1) (8d)

rm̃ · t(bm, rm) < rm · (t(bm̃, rm̃) + 1) (8e)

If Eq. (8d) and (8e) are both satisfied, the two elements are
intersecting. On the other hand, if either Eq. (8d) or (8e) is
violated, the two elements are not intersecting.

(⇒) If the slot packing for two PDUs m and m̃ is conflict-
ing, the corresponding elements in the bin packing intersect:

Without loss of generality, it is assumed that rm ≤ rm̃.
Two PDUs are conflicting in the slot packing if

∃n ∈ N0 : bm + rm · n = bm̃. (8f)

This means, that the log2 rm least significant bits of bm and
bm̃ are equal and, thus,

t(bm̃, rm̃) =
rm̃

rm
(t(bm, rm) + a) (8g)

holds with

0 ≤ a ≤ 1 − rm

rm̃
< 1. (8h)

Here, a is the potential remainder by applying a shift of
log2

rm̃
rm

bits. The upper bound 1 holds due to the problem-

specific constraint rm ≥ 1 and the given assumption rm̃ ≥
rm.

Equation (8g) is transformed to the following two equa-
tions:

rm · t(bm̃, rm̃) = rm̃ · (t(bm, rm) + a) (8i)

rm̃ · t(bm, rm) = rm · (t(bm̃, rm̃) − a · rm̃
rm

) (8j)

Given Eq. (8i) with a < 1, Eq. (8d) holds. At the same
time, Eq. (8e) holds due to Eq. (8j) and a ≥ 0. Thus, the
elements intersect as required.

(⇐) If the slot packing for two PDUs m and m̃ is not
conflicting, the corresponding elements in the bin packing
do not intersect:

Without loss of generality, it is assumed that rm ≤ rm̃.
Two PDUs are not conflicting in the slot packing if

∀n ∈ N0 : bm + rm · n 	= bm̃. (8k)

This means, that the log2 rm least significant bits of bm and
bm̃ are not equal and, thus, either

t(bm̃, rm̃) ≤ rm̃

rm
(t(bm, rm) − 1 + a) (8l)

or

t(bm̃, rm̃) ≥ rm̃

rm
(t(bm, rm) + 1 + a) (8m)

hold, both with a in the bounds from Eq. (8h). From Eq. (8l)
it follows

rm̃ · t(bm, rm) ≥ rm · ( rm̃
rm

(1 − a) + t(bm̃, rm̃)) (8n)

that violates Eq. (8e) due to rm̃
rm

(1− a) ≥ 1 that holds since

a ≤ 1 − rm
rm̃

as stated in Eq. (8h). Equation (8m) equals

rm · t(bm̃, rm̃) ≥ rm̃ · (t(bm, rm) + 1 + a) (8o)

that violates Eq. (8d) due to a ≥ 0. Thus, either Eq. (8d) or (8e)
is violated and the elements do not intersect as required.

This proves Eq. (1a) and Eq. (3a). Equation (1b) holds
due to Eq. (1a) and Eq. (3b) holds due to Eq. (3a) with the
inverse properties of the t function given in Eq. (2d).


